Best model was Logistics Regression

Training the model in Logistic Regression with Cross validation:

classification_report:
               precision    recall  f1-score   support

          -1       0.92      0.96      0.94       444
           0       0.98      0.98      0.98       126
           1       0.94      0.86      0.90       166
           2       0.91      0.89      0.90       174

    accuracy                           0.93       910
   macro avg       0.94      0.92      0.93       910
weighted avg       0.93      0.93      0.93       910

-----------------------------------------------------------
classification_report:
               precision    recall  f1-score   support

          -1       0.92      0.94      0.93       451
           0       0.94      0.92      0.93       459

    accuracy                           0.93       910
   macro avg       0.93      0.93      0.93       910
weighted avg       0.93      0.93      0.93       910

Untitled

Untitled

Training the model in SVM (Support Victor Machine):

classification_report:
               precision    recall  f1-score   support

          -1       0.84      0.95      0.89       444
           0       0.95      0.92      0.94       126
           1       0.95      0.77      0.85       166
           2       0.85      0.73      0.79       174

    accuracy                           0.87       910
   macro avg       0.90      0.84      0.87       910
weighted avg       0.88      0.87      0.87       910

-----------------------------------------------------------

classification_report:
               precision    recall  f1-score   support

          -1       0.88      0.93      0.90       451
           0       0.93      0.87      0.90       459

    accuracy                           0.90       910
   macro avg       0.90      0.90      0.90       910
weighted avg       0.90      0.90      0.90       910

Untitled

Untitled

Training the model in Decision Tree

classification_report:
               precision    recall  f1-score   support

          -1       0.90      0.92      0.91       444
           0       0.95      0.93      0.94       126
           1       0.91      0.83      0.87       166
           2       0.80      0.83      0.81       174

    accuracy                           0.89       910
   macro avg       0.89      0.88      0.88       910
weighted avg       0.89      0.89      0.89       910

-----------------------------------------------------------
classification_report:
               precision    recall  f1-score   support

          -1       0.92      0.92      0.92       451
           0       0.92      0.92      0.92       459

    accuracy                           0.92       910
   macro avg       0.92      0.92      0.92       910
weighted avg       0.92      0.92      0.92       910

Untitled

Untitled

Training the model in Naive_Bayes

classification_report:
               precision    recall  f1-score   support

          -1       0.82      0.71      0.76       444
           0       0.85      0.91      0.88       126
           1       0.66      0.73      0.70       166
           2       0.61      0.72      0.66       174

    accuracy                           0.75       910
   macro avg       0.74      0.77      0.75       910
weighted avg       0.76      0.75      0.75       910

-----------------------------------------------------------
classification_report:
               precision    recall  f1-score   support

          -1       0.79      0.86      0.82       451
           0       0.85      0.77      0.81       459

    accuracy                           0.81       910
   macro avg       0.82      0.81      0.81       910
weighted avg       0.82      0.81      0.81       910

Untitled

Untitled